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Abstract

A power series solution is presented for the free vibrations of simply supported beams resting on elastic
foundation having quadratic and cubic non-linearities. The time-dependence is assumed harmonic and the
problem is posed as a non-linear eigenvalue problem. The spatial variable is transformed into an
independent variable that satisfies the boundary conditions. This permits a power series expansion of the
beam motion in terms of the new variable. A recurrence relation is obtained from the governing equation
and used in conjunction with the Rayleigh energy principle to compute the natural frequencies. The results
show that, for a first order approximation, only the lower frequencies and first mode shape are significantly
affected by the cubic non-linearity.
r 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

Knowledge of the normal modes and frequencies of non-linear continuous systems constitutes
an important part in the dynamic analysis under loading conditions. At present, as for most non-
linear systems, no exact method of solution is available for such problems and resort is normally
made to some approximate method. In one approach, the motion is assumed to be a combination
of the linear normal modes whose contributions are represented by time-dependent generalized
co-ordinates. The Galerkin procedure is then employed to obtain a set of non-linear coupled
ordinary differential equations for the generalized co-ordinates. The discretized equations are
normally solved approximately by a perturbation technique [1,2] or the center manifold reduction
method [3]. Recently, the power series method has been used to obtain a solution of the
generalized co-ordinates for a beam resting on a non-linear foundation [4]. The equation of
motion was first discretized by using the Galerkin procedure. The time-dependent generalized
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co-ordinates were obtained by transforming the time variable into an oscillating time which
transformed the discretized equations into a form solvable by the power series method.
In another approach, the time-dependence is assumed harmonic and either the harmonic

balance principle or the Ritz method is used to produce a non-linear eigenvalue problem.
Szemplinska-Stupnicka [5] employed the harmonic balance method in conjunction with the
generalized Ritz method to determine the mode shapes of some non-linear beam systems and
considered the effects of non-linear boundary conditions.
More recently, Benamar et al. [6,7] assumed harmonic motion to compute the fundamental

mode and frequency of beams and rectangular plates at large amplitudes. The plate motion was
assumed to consist of products of the first five beam mode shapes and resulted in a set of 24 non-
linear algebraic equations which were solved numerically.
This work adopts the second approach to study the free vibrations of a simply supported beam

resting on non-linear foundation and uses the Ritz method to reduce the governing equation to a
non-linear eigenvalue problem. The spatial variable is first transformed into a new variable that
satisfies the beam boundary conditions. The transformed eigenvalue problem is then solved with
the aid of the Rayleigh energy principle.

2. Formulation

The problem treated here is the free vibrations of a linear Euler–Bernoulli simply supported
beam resting on a foundation with quadratic and cubic non-linearities.The governing equation of
motion is given by

q4w
qx4

þ a1w þ b1w
2 þ g1w

3 þ
q2w
qt2

¼ 0; ð1Þ

where wðx; tÞ is the beam transverse displacement at position x and time t and the constants
a1;b1; g1 characterize the stiffness of the foundation. For moderate vibration amplitudes, a first
order approximate solution of the form

wðx; tÞ ¼ uðxÞ cosðotÞ ð2Þ

can be used, where uðxÞ is the normal mode of vibration and o is the vibration frequency. When
this approximation is substituted in Eq. (1), a residual error eðx; tÞ results which is minimized
following the Ritz method by requiring thatZ 2p

0

eðx; tÞ cosðotÞ dðotÞ ¼ 0: ð3Þ

This process yields the non-linear eigenvalue problem

d4u

dx4
þ au þ bu2 þ gu3 � o2u ¼ 0 ð4Þ

subject to the boundary conditions u ¼ d2u=dx2 ¼ 0 at x ¼ 0; 1 and the constants a ¼ a1; b ¼
0; g ¼ 3

4
g1: It is noted here that, for a first order approximation, the quadratic non-linearity has no

effect on the normal modes of vibration.
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To facilitate the use of the power series method for this problem, it is convenient to transform
the independent variable x into a new variable Z that satisfies the boundary conditions as follows:

Z ¼ sin npx; ð5Þ

where n is the mode number. Upon using Eq (5) in Eq. (4), the transformed eigenvalue problem
becomes

ð1� Z2Þ2
d4u

dZ4
� 6Zð1� Z2Þ

d3u

dZ3
þ ð7Z2 � 4Þ

d2u

dZ2
þ Z

du

dZ
þ ðau þ bu2 þ gu3 � o2uÞ=ðZpÞ4 ¼ 0: ð6Þ

According to the theory of ordinary differential equations [8], Eq. (6) has one ordinary point at
Z ¼ 0 and two regular singular points at Z ¼ 71: It is appropriate to expand uðZÞ about the
ordinary point as follows:

uðZÞ ¼ a1 þ a2Zþ a3Z2 þ a4Z3 þ? ¼
XN
k¼1

akZk�1; ð7Þ

where the coefficients ai are constants to be determined. It is noted that all the boundary
conditions on u; as given by Eq. (7), are satisfied if one sets a1 ¼ a3 ¼ 0: Substituting Eq. (7) in
Eq. (6) and introducing a shift of indices, where necessary, so that all terms have the same power
form, one obtainsXN

k¼1

½C1akþ4 � C2akþ2 þ C3ak þ ðaak þ bbk þ gck � o2akÞlðZpÞ
4�Zk�1 ¼ 0; ð8Þ

where

C1 ¼ kðk þ 1Þðk þ 2Þðk þ 3Þ;

C2 ¼ 2kðk þ 1Þðk2 þ 1Þ;

C3 ¼ ðk � 1Þððk � 2Þðk2 � k þ 1Þ þ 1Þ:

The coefficients bk; ck are those of the non-linear terms u2; u3; respectively, which result from
repeated multiplication of Eq. (7) and can be computed once the coefficients a1; a2;y; akþ1 are
known:

u2 ¼
XN
k¼1

bkZk�1; u3 ¼
XN
k¼1

ckZk�1: ð9Þ

If Eq. (6) is to be satisfied for all values of Z; all the bracketed coefficients in Eq. (8) must vanish.
This condition gives the recurrence relation:

akþ4 ¼ ðC2akþ2 � C3ak � ðaak þ bbk þ gck � o2akÞ=ðZpÞ
4Þ=C1; k ¼ 1; 2;y ð10Þ

which permits the computation of a5 and higher coefficients based on the values of the four
fundamental constants a1; a2; a3; a4 for a specified value of the frequency o:
Each mode of vibration is considered separately by assigning a value for the mode number n;

(for the first mode, n ¼ 1; etc.). Consequently, the value of a4 is set to zero because the cubic term
involves the participation of higher modes in the basis of the solution. The remaining coefficients
will, therefore, depend on the values of a2 and the vibration frequency o which appears as an
auxiliary parameter. The true value of o can be determined by invoking the Rayleigh energy
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principle, which states that for a conservative system, the maximum kinetic and strain energies,
Tmax;Umax; respectively, are equal. For the system considered,

Tmax ¼
1

2
o2

Z 1

0

u2 dx; ð11Þ

Umax ¼
Z 1

0

1

2

d2u

dx2

� �2

þ
1

2
au2 þ

1

3
bu3 þ

1

4
gu4

" #
dx: ð12Þ

In the above integrals, each term is written as a power series of Z and the curvature can be shown
to be

d2u

dx2
¼ ðZpÞ2 ð1� Z2Þ

d2u

dZ2
� Z

du

dZ

� �

¼ ðZpÞ2
XN
k¼1

½kðk þ 1Þakþ2 � ðk � 1Þ2ak�Zk�1: ð13Þ

The evaluation of the integrals requires integration with respect to Z: Since Zj jp1; the binomial
theorem can be used to express dx; with the aid of Eq. (5), as a power series of Z as follows:

dx ¼
dZ

Zp
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Z2

p ¼ ðr1 þ r2Zþ r3Z2 þ r4Z3 þ?Þ dZ; ð14Þ

where the constants ri are given by

r1 ¼
1

Zp
; r2kþ1 ¼

1

Zpk!

Yk

i¼1

i �
1

2

� �
; kZ1

and all the odd power coefficients are zero. The same limits of integration can conveniently be
used which then covers a part of the beam.

3. Results and discussion

The first three non-linear normal modes and frequencies were computed by using the recurrence
relation (10) in conjunction with the Rayleigh energy principle. For each mode, the amplitude–
frequency dependence was investigated by assigning the appropriate value for n. For a specified
amplitude of vibration as set by assigning a value for a2; a frequency search was made for the
natural frequency by computing a motion associated with a specified frequency o from Eq. (10).
This motion was then used to evaluate the kinetic and strain energies from Eqs. (11) and (12),
respectively. The error function e ¼ Umax � Tmax; which depends on o always crossed the
frequency axis at two frequencies for which the Rayleigh energy principle was satisfied. This
feature of multiple solutions characterizes non-linear systems and the lower frequency was
selected as the natural frequency of vibration The associated motion coefficients determine the
corresponding normal mode.
To demonstrate the applicability of the present method to the linear vibration of beams, the

formulation was first applied to the vibration of the beam without a foundation ða ¼ b ¼ g ¼ 0Þ:
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The error function computed at the exact value of the first natural frequency ðp2Þ was less than
10E-14 when the first 40 terms were included in the power series. This number of terms was used
in all subsequent computations.
In Table 1 the non-linear frequency ratio o=oL of the first three modes is presented for various

amplitudes and the specified values of the foundation parameters a ¼ 0 and g=2000. It can be
seen that the fundamental frequency is significantly affected by the presence of the cubic non-
linearity of the foundation. This influence is reduced at the higher modes with the third frequency
being least affected. These results are supported by the findings of Qaisi [4]. In Fig. 1 the
convergence of the fundamental frequency is demonstrated for amplitude of 1.15, a ¼ 0; g ¼ 2000:
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Table 1

Frequency ratio o=oL versus amplitude for the first three modes of the simply supported beam (a=0, g ¼ 2000)

Amplitude Mode

First Second Third

0.10 1.0385 1.0018 1.0008

0.25 1.2057 1.0139 1.0029

0.50 1.6718 1.0525 1.0107

0.75 2.1480 1.1145 1.0233

1.00 2.7559 1.1969 1.0419

Fig. 1. Convergence of the fundamental frequency for amplitude=1.15,a ¼ 0; g ¼ 2000:
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In Fig. 2 the effect of the cubic non-linearity on the first normal mode is depicted for a vibration
amplitude of unity. The cubic non-linearity is seen to increase the curvature of the beam at large
amplitudes. The second and third modes are almost unaffected by the presence of the foundation
even at large amplitudes, since they are indistinguishable from the linear modes. In Table 2 the
first 30 power series coefficients are shown for a unit amplitude with a ¼ 0; g ¼ 2000: A
progressive decrease in the value of the coefficients is seen which characterizes a convergent
solution.
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Fig. 2. The effect of the cubic non-linearity on the fundamental mode shape at unit amplitude (—, linear; ......,

g ¼ 2000).

Table 2

First 30 power series coefficients for amplitude unity a ¼ 0; g ¼ 2000

k 1 2 3 4 5 6

ak 0 9.10000e�1 0 0 0 4.7699e�2
akþ6 0 2.0194e�2 0 1.1012e�2 0 6.6032e�3
akþ12 0 4.6411e�3 0 2.9463e�3 0 2.1182e�3
akþ18 0 1.5770e�3 0 1.2076e�3 0 9.6427e�4
akþ24 0 7.5589e�4 0 6.1371e�4 0 5.0524e�4
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4. Conclusion

An analytical solution based on the power series method is presented for the free vibration of
simply supported beams resting on non-linear foundations. A convergent solution was obtained
by transforming the independent space variable into a new variable that satisfied the boundary
conditions. The results show that, for a first order approximation, the quadratic non-linearity has
no effect on the beam-free vibrations, whereas the cubic non-linearity strongly affects the beam
fundamental frequency at large amplitudes with noticeable effect on the first mode shape. Higher
modes and frequencies, however, are much less affected by the foundation.
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